Category:Rational numbers
Zur Navigation springen
Zur Suche springen
English: A rational number is any number that can be expressed as the quotient or fraction p/q of two integers, with the denominator q not equal to zero. Since q may be equal to 1, every integer is a rational number. This category represents all rational numbers, that is, those real numbers which can be represented in the form: ...where and are integers and is not equal to zero. All integers are rational, including zero.
Zahl, die als Verhältnis zweier ganzer Zahlen dargestellt werden kann | |||||
Medium hochladen | |||||
Isch e |
| ||||
---|---|---|---|---|---|
Isch e Unterklass vo | |||||
Isch Dail vu |
| ||||
Bstoht us |
| ||||
Verschide vo | |||||
Vilicht gliichwärtig | Egyptian fraction | ||||
| |||||
![]() |
Unterkategorie
S wäre 12 vu insgsamt 12 Unterkategorie in däre Kategori aazeigt:
Medie in dr Kategori „Rational numbers“
S wäre 52 vu insgsamt 52 Dateie in däre Kategori aazeigt:
- 3分の1と3分の2.png 959 × 375; 6 KB
- Algebra1 03 fig003 segmentounitario.svg 303 × 103; 14 KB
- Algebra1 03 fig021 perretre.svg 71 × 24; 4 KB
- Algebra1 03 fig022a rettafraz.svg 306 × 56; 21 KB
- Algebra1 03 fig022b rettafraz.svg 316 × 46; 14 KB
- Algebra1 fnz fig011 ret.svg 320 × 43; 19 KB
- Algebra1 fnz fig012 ret.svg 320 × 24; 9 KB
- Bad dyadic approximation.svg 512 × 294; 5 KB
- Btree1.jpg 800 × 600; 190 KB
- Chandhini K Nair.jpg 2.768 × 2.551; 1,6 MB
- Decimal-fraction equivalents--v0006.png 3.217 × 1.767; 41 KB
- Diagonal argument.svg 429 × 425; 77 KB
- Diophantine approximation graph.svg 512 × 640; 16 KB
- Divisione numero periodico.png 178 × 293; 8 KB
- Dyadic rational.svg 512 × 294; 3 KB
- Dyadic sqrt2 approximation.svg 512 × 568; 5 KB
- Esempi di Frazioni Equivalenti.jpg 644 × 220; 31 KB
- Figure e Frazioni Proprie.jpg 491 × 209; 13 KB
- Frazioni Apparenti.jpg 613 × 282; 34 KB
- Frazioni che danno interi.jpg 251 × 75; 4 KB
- HarmonicNumbers.svg 600 × 480; 8 KB
- Irregularity of distributions.png 1.193 × 674; 132 KB
- Irregularity of distributions.svg 512 × 288; 74 KB
- Just diatonic semitone on C.mid 0,0 s; 206 Bytes
- Konstrukcja liczb wymiernych 1.svg 721 × 380; 53 KB
- LosnmerosRacionales 198 4741.jpg 517 × 290; 70 KB
- Middle usage example LaTeX.svg 177 × 62; 7 KB
- Natural scale ratios -Large Print.svg 714 × 373; 71 KB
- Nomenclatura de denominadores.png 686 × 852; 63 KB
- Nonuniform.png 1.250 × 1.250; 17 KB
- Number-systems (NZQRC).svg 1.000 × 500; 421 Bytes
- Number-systems.svg 800 × 400; 501 Bytes
- Números Reales.svg 2.000 × 2.000; 9,02 MB
- Passeiodecantor1.png 1.126 × 845; 96 KB
- Passeiodecantor2.png 1.151 × 864; 141 KB
- Passeiodecantor3.png 983 × 710; 58 KB
- Quadrati Frazioni.jpg 408 × 78; 6 KB
- Quadrato Frazioni.jpg 67 × 73; 2 KB
- Radionella tal.png 799 × 638; 79 KB
- Rationals.png 447 × 276; 6 KB
- Recta racional v001.svg 500 × 150; 2 KB
- Retta Frazioni.jpg 479 × 166; 9 KB
- Schema Proporzione I.jpg 309 × 140; 9 KB
- Schema Proporzione II.jpg 296 × 154; 12 KB
- Set-of-numbers for junior education japanese.svg 550 × 300; 23 KB
- Sets of Numbers (Without Complex Numbers).svg 512 × 359; 44 KB
- Stereographic projection of rational points on circle.svg 526 × 200; 491 KB
- Stereographic projection of rational points.svg 526 × 200; 137 KB
- Struttura Frazione.jpg 268 × 136; 7 KB
- Superposition of two simple harmonic motions, rational ratio frequencies.png 1.855 × 896; 220 KB
- The process of comparing numbers in rational and decimal forms.jpg 2.481 × 3.508; 678 KB
- 分数説明図.png 1.276 × 787; 14 KB