Natural exponential function

Iš Wikimedia Commons.
(Nukreipta iš Exponential function)
Jump to navigation Jump to search
función exponencial (es); Exponenciális függvény (hu); Fungsi eksponen (ms); Экспонента (ba); natürliche Exponentialfunktion (de); Էքսպոնենտ (hy); Експоненциална функция (bg); მაჩვენებლიანი ფუნქცია (ka); 自然指数関数 (ja); אקספוננט (he); Functio exponentialis (la); चरघातांकी फलन (hi); Función exponencial (gl); Экспоненттік функция (kk); eksponenta funkcio (eo); přirozená exponenciální funkce (cs); Eksponencijalna funkcija (bs); Funzione esponenziale (it); সূচক ফাংশন (bn); fonction exponentielle (fr); Εκθετική συνάρτηση (el); Экспонента (cv); اسی دالہ (ur); экспоненциальная функция (ru); 自然指数函数 (zh); Eksponentfunktsioon (et); Fonsion esponensial (pms); Espuninziali (scn); função exponencial natural (pt); Funcție exponențială (ro); Eksponentfunkcija (lv); Eksponensiële funksie (af); Експоненцијална функција (sr); Exponentiële functie (nl); Eksponensiyal na punsiyon (tl); função exponencial natural (pt-br); Fungsi eksponensial (id); ฟังก์ชันเลขชี้กำลัง (th); Eksponentialfunksjon (nn); Eksponentialfunksjon (nb); Eksponencijalna funkcija (sh); படிக்குறிச் சார்பு (ta); Eksponentinė funkcija (lt); Eksponencijalna funkcija (hr); فانکشنی توانی (ckb); natural exponential function (en); دالة الأس الطبيعي (ar); 自然指数函数 (zh-hans); Експонента (функція) (uk) funzione consistente nell'elemento a potenza della costante di Eulero e (it); 冪における指数を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数 (ja); fonction mathématique (fr); показательная функция e^x (ru); 以常数e为底的指数函数 (zh-hans); jediná funkce, která se rovná své vlastní derivaci a v nule je rovna jedné (cs); única função que é igual à sua própria derivada e igual a um em zero (pt); exponential function with base e (en); دالة أسية ذات الأساس e (أو هـ بالعربية) (ar); 以e为底的指数函数 (zh); exponential function with base e (en) экспонента, натуральная экспонента (ru); 指数関数, 自然指数函数, 指数函数 (ja); 指数函数 (zh-hans); função exponencial, e^x, exp (pt); exponential function, exp, exp(), exp(x), e^x, natural exponential functions (en); دالة أسية نيبيرية, دالة أسية طبيعية, دالة الأس النيبيري, e^x (ar); 指数函数, 指數函數, 自然指數函數 (zh); e^x, exp, exp(x), exponenciální funkce (cs)
Eksponentinė funkcija 
exponential function with base e
Exp e.svg
Įkelti mediją
Wikipedia-logo-v2.svg  Vikipedija
Yratype of mathematical function,
Eksponentinė funkcija (Skaičius e)
Skiriasi nuo
Authority control
Edit infobox data on Wikidata

Plots of the Exponential Function over the Complex Plane[keisti]

The exponential function is more complicated in the complex plane. On the real axis, the real part follow the expected exponential shape, and the imaginary part is identically zero. However, as the imaginary part changes, the exponential varies sinusoidally, with a period of 2π in the imaginary direction.

Real Part[keisti]

In this plot, you can see the main branch on the real axis (y=0), and part of each branch on either side. This plot runs from -2π..2π in the y-direction and from -3..3 in the x-direction.

Exponential Function (Real Part).png
Exponential Function (Real Part) Density.png

The colour in the density plot (right) runs from red (large negative values), through green (nearly zero) to blue (large positive values) Please note that the this colour scheme is non-linear (it is based on the Arctan function and therefore emphaseses changes near zero more), and thus a given change in hue does NOT necessarily reflect a similar change in value, although at the same magnitude, the changes should be identical.

The plot below shows the real part of the exponential function as the operand approaches infinity. This plot is given by:

Exponential Function (Real Part at Infinity).png Exponential Function (Real Part at Infinity) Density.png

The plot below shows the absolute value of the real part as the operand approaches infinity:

The colouring of the density plots is different to the graphs above. It runs from green (small), through blue and red to yellow (large). It is highly non-linear and changes near zero give a larger hue shift than large values.

Exponential Function (Abs Real Part at Infinity).png Exponential Function (AbsReal Part at Infinity) Density.png


Imaginary Part[keisti]

Exponential Function (Imag Part).png Exponential Function (Imag Part) Density.png

The plot below shows the imaginary part of the exponetial function as the operand approaches infinity. This plot is given by:

Note that the orientation of the surface graph below is different to provide a better view of the structure of the function.

Exponential Function (Imag Part at Infinity).png Exponential Function (Imag Part at Infinity) Density.png

The plot below shows the absolute value of the imaginary part as the operand approaches infinity:

The colouring of the density plots is different to the graphs above. It runs from green (small), through blue and red to yellow (large). It is highly non-linear and changes near zero give a larger hue shift than large values.

Exponential Function (Abs Imag Part at Infinity).png Exponential Function (Abs Imag Part at Infinity) Density.png

Modulus[keisti]

The modulus of the value is the same as the value of the exponential of just the real part of the operand. Since the real part behaves as a cosine across the complex plane, and the imaginary part like a sine, the modulus which is related to the real part squared plus the imaginary part squared. As , it makes sense that the modulus is invariant in the imaginary direction.

Exponential Function Modulus.png 400px

Argument[keisti]

The argument of the exponential function is simply the argument of the operand. The density plot has a linear colour function (an equal change in colour is representative of an equal change in the value of the point). Red is lowest, green is zero and blue is highest.

Exponential Function Argument.png 400px

Taylor Series Approximations[keisti]

Real Part, Main Branch[keisti]