File:High Resolution FMRI of the Human Brain.gif

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

High_Resolution_FMRI_of_the_Human_Brain.gif(512 × 256 pixels, file size: 1.06 MB, MIME type: image/gif, looped, 114 frames, 23 s)

Structured data


Add a one-line explanation of what this file represents



High Resolution FMRI of the Human Brain

1 mm cubical voxels at 3 Tesla The following images show the results from two functional MRI experiments:

  • The first with voxel dimensions 1x1x10 mm**3 and 1 slice;
  • The second with voxel dimensions 1x1x1 mm**3 and 10 slices.

Both experiments used FOV=128 mm, image matrix=128x128, and TR=2 s. The background images are the 10 slices gathered in the first EPI shot of the high resolution experiment. With this contrast, CSF is the brightest, gray matter next, and white matter slightly darker than gray matter. The task alternation is 40 s rest and 40 s bilateral finger tapping, for a total of 150 acquisitions (300 s). The function is calculated from all slices, and rendered into 3D using AFNI.

Left: 1x1x10 mm**3 data. Right: 1x1x1 mm**3 data.

At the start of the animation, the 10 mm thick slab is viewed from above. The color overlay that then appears represents the functional activation, with red indicating signal changes under 15% and yellow signal changes over 20%. The background images are rendered as partly transparent so that the color overlay can "shine through". As the animation progresses, the viewpoint swings around to the side, showing the function from different angles. The background image then fades out completely, and the activated volumes are left hanging in space while the viewpoint swings back to the original top-down orientation.

On the left, the activated regions are crudely shaped along the inferior-superior axis, due to the low spatial resolution in that direction.

The color shows that the estimated signal change due to activation is smaller in the low resolution dataset. This is probably due to partial-volume effects: not all of the volume of a 1x1x10 mm**3 voxel will be filled with "activated" tissue. Since the signal from a voxel is averaged over its entire contents, if only a small portion of the voxel has a large signal change, the net measured result is a small signal change. With smaller voxels, the regions that are not active will be pruned away and the observed signal changes will be larger.

A confounding problem occurs at high resolution when the activation is over a large region. In MRI, the intrinsic signal-to-noise ratio (SNR) declines as the voxel size shrinks. For a fixed number of image acquisitions and for a fixed statistical threshold, lower SNR means that only larger signal changes can be detected. This effect can be overcome by acquiring more images. This effect is also partly mitigated by the fact that much of the interfering "noise" in the detection of FMRI signal changes is not truly MRI noise but is physiological in origin. This type of "noise" will decline as the voxel size shrinks.

Source National Institute of Mental Health


Public domain
This work is in the public domain in the United States because it is a work prepared by an officer or employee of the United States Government as part of that person’s official duties under the terms of Title 17, Chapter 1, Section 105 of the US Code. Note: This only applies to original works of the Federal Government and not to the work of any individual U.S. state, territory, commonwealth, county, municipality, or any other subdivision. This template also does not apply to postage stamp designs published by the United States Postal Service since 1978. (See § 313.6(C)(1) of Compendium of U.S. Copyright Office Practices). It also does not apply to certain US coins; see The US Mint Terms of Use.
Great Seal of the United States (obverse).svg

File history

Click on a date/time to view the file as it appeared at that time.

current11:47, 23 October 2005Thumbnail for version as of 11:47, 23 October 2005512 × 256 (1.06 MB)Lipothymia (talk | contribs)High Resolution FMRI of the Human BrainDocument Actions 1 mm cubical voxels at 3 Tesla The following images show the results from two functional MRI experiments: The first with voxel dimensions 1x1x10 mm**3 and 1 slice; The second with voxel dimensions
  • You cannot overwrite this file.

The following page uses this file:

File usage on other wikis

The following other wikis use this file: