File:Hyperbolic Tangent.svg
Captions
Captions
Summary
[edit]| DescriptionHyperbolic Tangent.svg |
English: Hyperbolic Tangent function plot
tanh(x) = (e^x - e^-x) / (e^x + e^-x) Plotted with cubic bezier-curves. The bezier-control-points are calculated to give a very accurate result. Asymptotes are included but commented out. Symbols are embeded in "Computer Modern" (TeX) font.Deutsch: Tangens Hyperbolicus Plot |
| Date | |
| Source | Own work |
| Author | Geek3 |
| SVG development InfoField |
See also
[edit]Licensing
[edit]- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 15:40, 5 September 2009 | 490 × 270 (12 KB) | Geek3 (talk | contribs) | nicer version | |
| 22:04, 10 June 2008 | 420 × 220 (12 KB) | Geek3 (talk | contribs) | {{Information |Description={{en|1=Hyperbolic Tangent function plot tanh(x) = (e^x - e^-x) / (e^x + e^-x) Plotted with cubic bezier-curves. The bezier-controll-points are calculated to give a very accurate result. Asymptotes are included but commented out |
You cannot overwrite this file.
File usage on Commons
The following 47 pages use this file:
- Trigonometric functions
- File:Division ((cos x)^2)-1; x^2.png
- File:Division ((cosh x)^2)-1; x^2.png
- File:Division ((cosh x)^2)-1; x^2 (detail).png
- File:Division (cos x)-1; (cos x)^2-1.png
- File:Division (cos x)-1; (cos x)^2-1 (derivatives).png
- File:Division (cos x)-1; (cosh x)-1 (derivatives).png
- File:Division (cos x)-1; (sin x)^2.png
- File:Division (cos x)-1; (sin x)^2 (derivatives).png
- File:Division (cos x)-1; (sinh x)^2.png
- File:Division (cos x)-1; (sinh x)^2 (derivatives).png
- File:Division (cos x)-1; x^2 (derivatives).png
- File:Division (cos x)-1; x^2 (detail).png
- File:Division (cosh x)-1; (sin x)^2 (derivatives).png
- File:Division (cosh x)-1; (sinh x)^2.png
- File:Division (cosh x)-1; (sinh x)^2 (derivatives).png
- File:Division (cosh x)-1; x^2.png
- File:Division (cosh x)-1; x^2 (derivatives).png
- File:Division (cosh x)-1; x^2 (detail).png
- File:Division (x+1)div(x-1)+1; (x-1)div(x+1)+1.png
- File:Division 1+(1 div x-1); 1-(1 div x+1).png
- File:Division 2^(x+1)-2; 0,5^(x+1)-0,5.png
- File:Division 2^(x+1)-2; 0,5^x-1.png
- File:Division arsinh x; 20^x - 1.png
- File:Division arsinh x; e^x - 1.png
- File:Division cos(x)-1; cosh(x)-1.png
- File:Division cos(x)-1; x^2.png
- File:Division cosh(x)-1; (sin x)^2.png
- File:Division coth x; x^(-1).png
- File:Division e^(x)-1; (x+1)^2-1.png
- File:Division e^(x+1)-e; 0,5^(x+1)-0,5.png
- File:Division e^(x+1)-e; e^x-1.png
- File:Division e^x-1; cosh(x+arcosh(2))-2.png
- File:Division e^x - 1; 20^x - 1.png
- File:Division sin(x); sinh(x).png
- File:Division tanh x; 20^x - 1.png
- File:Division tanh x; arsinh x.png
- File:Division tanh x; e^x - 1.png
- File:Division tanh x; sinh x.png
- File:Division tanh x; x.png
- File:Division x; 20^x - 1.png
- File:Fibonacci explicit.png
- File:Fibonacci explicit (detail).png
- File:Hyperbolic and exponential; cosh.png
- File:Hyperbolic and exponential; sinh.png
- File:Tanh.png
- Template:Created with Ultiplot
File usage on other wikis
The following other wikis use this file:
- Usage on ar.wikipedia.org
- Usage on cs.wikipedia.org
- Usage on de.wikipedia.org
- Usage on de.wikiversity.org
- Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 18
- Hyperbelfunktionen/R/Einführung/Textabschnitt
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 13
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 13/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Repetitorium/Vorlesung 13
- Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 13
- Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 13/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 18/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I/Vorlesung 13
- Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I/Vorlesung 13/kontrolle
- Usage on en.wikibooks.org
- Usage on en.wikiversity.org
- Usage on es.wikipedia.org
- Usage on eu.wikipedia.org
- Usage on fr.wikipedia.org
- Usage on gl.wikipedia.org
- Usage on km.wikipedia.org
- Usage on pa.wikipedia.org
- Usage on pt.wikipedia.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
| Short title | Tanh.svg - a nice plot of the hyperbolic tangent function |
|---|---|
| Image title |
Tanh-function
tanh(x) = (e^x - e^-x) / (e^x + e^-x)
from Wikimedia Commons
plotted with cubic bezier-curves
the bezier-controll-points are calculated to give a very accurate result.
graph acuracy is 0.000001
symbols in "Computer Modern" (TeX) font embedded
created with a plain text editor using GNU/Linux
about: http://commons.wikimedia.org/wiki/Image:Hyperbolic tangent.svg source: http://commons.wikimedia.org/ rights: GNU Free Documentation license, Creative Commons Attribution ShareAlike license |