This page contains accelerating angle curves (AACs) that were excluded from my book but I nevertheless found 'interesting'. Each AAC's symmetry is described using group-theoretic notation (Cn for cyclic group n; Dn for dihedral group n)[1].
Gallery of accelerating angle curves with only rotational symmetry[edit]
AAC [9 : 2 1 8 5 3]; C3
AAC [108: 0 37 42 63 90]; C9
AAC [45: 0 2 9]; C9
AAC [576: 0 41 234 360]; C9
AAC [360: 0 232 216 288 72]; C9
AAC [240: 0 119 84]; C12
AAC [240: 0 28 96]; C12
AAC [840: 0 839 324]; C12
AAC [105: 0 83 15 75 90]; C15
AAC [105: 0 8 45]; C15
AAC [360: 0 160 297]; C18
AAC [360: 0 1 297]; C18
AAC [361: 0 258 247 190 209]; C19
AAC [361: 0 9 19]; C19
AAC [666: 0 118 370]; C37
AAC [666: 0 354 444]; C37
AAC [360: 0 184 344 40 288 24]; C45
AAC [360: 0 175 216]; C72
AAC [360: 0 137 225]; C90
Gallery of accelerating angle curves with both rotational and reflectional symmetry (dihedral)[edit]