User:Parcly Taxel
Appearance
VG-4 | This user is able to contribute with an expert level on vector graphics. |
![]() |
File:Taxol.svg has been that is, images and other media files that can be used by anyone, for any purpose. Traditional copyright law does not grant these freedoms,
|
Hyperbolic tilings
[edit]Triangle group | dual | truncated dual | rectified | truncated primal | primal | cantellated | omnitruncated | snub |
---|---|---|---|---|---|---|---|---|
(7 3 2) | ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
(5 4 2) | ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
(8 3 2) | ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
(∞ 3 2) | ![]() |
![]() |
Quotient spaces
[edit]-
Fundamental domains of the Klein quartic…
-
…the Bolza surface…
-
…and Bring's curve.
The Fifty-Nine Icosahedra stellation diagrams
[edit]-
Regular icosahedron (Crennell 1)
-
Wenninger's second stellation (6)
-
Echidnahedron (8)
-
Wenninger's twelfth stellation (9)
-
Wenninger's fourth stellation (11)
-
Wenninger's fifth stellation (20)
-
Wenninger's seventh stellation (21)
-
Wenninger's sixth stellation (23)
-
Wenninger's eighth stellation (29)
-
Wenninger's tenth stellation (33)
-
Wenninger's eleventh stellation (34)
-
Wenninger's fourteenth stellation (37)
-
Wenninger's fifteenth stellation (45)
-
Wenninger's thirteenth stellation (51)
Circle packings in a square
[edit]Tantrix tiles
[edit]Minimal-genus embeddings of complete graphs
[edit]Graph | Primal | Dual |
---|---|---|
K8 | ![]() |
![]() |
K9 | ![]() | |
K10 | ![]() |
![]() |
K11 | ![]() | |
K12 | ![]() |
![]() |
K13 | ![]() |
![]() |
K14 | ![]() |
![]() |
K15 | ![]() |
![]() |
K16 | ![]() |
![]() |
K17 | ![]() |
![]() |
K18 | ![]() |
![]() |
K19 | ![]() |
![]() |
Nonorientable surfaces
[edit]Graph | Primal | Dual |
---|---|---|
K8 | ![]() |
![]() |
K9 | ![]() |
![]() |
K10 | ![]() |
![]() |
K11 | ![]() |
![]() |
K12 | ![]() |
![]() |
K13 | ![]() |
![]() |
K14 | same as orientable K14, but use a crosscap to add the final edge | |
K17 | same as orientable K17, but use a crosscap to add the final edge |
Other graphs
[edit]-
J(5, 2) (Petersen graph complement)