This file was selected for display on the Main Page as the media of the day. Click here for more information.

File:Impact movie.ogv

From Wikimedia Commons, the free media repository
(Redirected from File:Impact movie.ogg)
Jump to navigation Jump to search

Impact_movie.ogv(Ogg Theora video file, length 43 s, 320 × 240 pixels, 292 kbps, file size: 1.49 MB)

Captions

Captions

Add a one-line explanation of what this file represents

This is Video (Ogg Theora) This is Video (Ogg Theora)

Description

High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc).

A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.

English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.
Source http://deepimpact.jpl.nasa.gov/gallery/mpeg4.html
Author NASA Ames Resarch Center (NASA-ARC) Vertical Gun Range, NASA Ames Research Center; Peter H. Schultz, Brown University
Other versions See Image:Impact still.jpg for a single still frame, and Image:Impact sequence.jpg for a sequence of still frames from similar experiments.
Media of the day This file was selected as the media of the day for 20 January 2011. It was captioned as follows:
English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.
Other languages
English: High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc). A side-view of a near-vertical impact at 500 frames per second (or 2 milliseconds between each frame) taken with a high-speed video. This is a 60-degree impact (from horizontal) into a highly porous target of fine particles. Now you can see the funnel-shaped ejecta curtain moving across the surface after the crater forms. The curtain resembles an inclined wall of particles that actually represent the collection of particles ejected at a well-defined position, time, and velocity. Eventually the crater emerges from behind the ejecta curtain as it moves outward and becomes transparent. This sequence illustrates the evolution of a crater that is stopped by the effects of gravity, rather than strength in the target. These ejecta are launched out of the target and only gravity limits how far they can travel beyond the rim on ballistic trajectories. If the target had strength, the curtain would seem to separate from the rim as the crater finishes.


Public domain This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.)
Warnings:

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:19, 26 June 200643 s, 320 × 240 (1.49 MB)Vesta~commonswiki (talk | contribs)This is Video (Ogg Theora) '''This is Video (Ogg Theora)''' {{Information |Description=High-speed digital sequence of a vertical impact by a copper sphere traveling at 4.5 km/sec into porous pumice (density of about 1g/cc).

Transcode status

Update transcode status
Format Bitrate Download Status Encode time
VP9 240P 211 kbps Completed 13:50, 29 August 2018 35 s
Streaming 240p (VP9) 212 kbps Completed 05:55, 5 December 2023 1.0 s
WebM 360P 257 kbps Completed 14:44, 30 November 2023 5.0 s
Streaming 144p (MJPEG) 1.02 Mbps Completed 09:49, 15 November 2023 2.0 s

File usage on other wikis

The following other wikis use this file:

Metadata