File:DiffusionMicroMacro.gif
维基共享资源,媒体文件资料库
跳转到导航
跳转到搜索
DiffusionMicroMacro.gif (360 × 300像素,文件大小:402 KB,MIME类型:image/gif、循环、60帧、6.5秒)
文件信息
结构化数据
说明
File:DiffusionMicroMacro.svg是此文件的矢量版本。 如果此文件质量不低于原点阵图,就应该将这个GIF格式文件替换为此文件。
File:DiffusionMicroMacro.gif → File:DiffusionMicroMacro.svg
更多信息请参阅Help:SVG/zh。
|
摘要
[编辑]描述DiffusionMicroMacro.gif |
English: Diffusion from a microscopic and macroscopic point of view. Initially, there are solute molecules on the left side of a barrier (magenta line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container. Top: A single molecule moves around randomly. Middle: With more molecules, there is a clear trend where the solute fills the container more and more evenly. Bottom: With an enormous number of solute molecules, the randomness is gone: The solute appears to move smoothly and systematically from high-concentration areas to low-concentration areas, following Fick's laws.
Image is made in Mathematica, source code below. |
日期 | |
来源 | 自己的作品 |
作者 | Sbyrnes321 |
许可协议
[编辑]Public domainPublic domainfalsefalse |
我,本作品著作权人,释出本作品至公有领域。这适用于全世界。 在一些国家这可能不合法;如果是这样的话,那么: 我无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。 |
<< Mathematica source code >>
(* Source code written in Mathematica 6.0, by Steve Byrnes, 2010. I release this code into the public domain. Sorry it's messy...email me any questions. *) (*Particle simulation*) SeedRandom[1]; NumParticles = 70; xMax = 0.7; yMax = 0.2; xStartMax = 0.5; StepDist = 0.04; InitParticleCoordinates = Table[{RandomReal[{0, xStartMax}], RandomReal[{0, yMax}]}, {i, 1, NumParticles}]; StayInBoxX[x_] := If[x < 0, -x, If[x > xMax, 2 xMax - x, x]]; StayInBoxY[y_] := If[y < 0, -y, If[y > yMax, 2 yMax - y, y]]; StayInBoxXY[xy_] := {StayInBoxX[xy[[1]]], StayInBoxY[xy[[2]]]}; StayInBarX[x_] := If[x < 0, -x, If[x > xStartMax, 2 xStartMax - x, x]]; StayInBarY[y_] := If[y < 0, -y, If[y > yMax, 2 yMax - y, y]]; StayInBarXY[xy_] := {StayInBarX[xy[[1]]], StayInBarY[xy[[2]]]}; MoveAStep[xy_] := StayInBoxXY[xy + {RandomReal[{-StepDist, StepDist}], RandomReal[{-StepDist, StepDist}]}]; MoveAStepBar[xy_] := StayInBarXY[xy + {RandomReal[{-StepDist, StepDist}], RandomReal[{-StepDist, StepDist}]}]; NextParticleCoordinates[ParticleCoords_] := MoveAStep /@ ParticleCoords; NextParticleCoordinatesBar[ParticleCoords_] := MoveAStepBar /@ ParticleCoords; NumFramesBarrier = 10; NumFramesNoBarrier = 50; NumFrames = NumFramesBarrier + NumFramesNoBarrier; ParticleCoordinatesTable = Table[0, {i, 1, NumFrames}]; ParticleCoordinatesTable[[1]] = InitParticleCoordinates; For[i = 2, i <= NumFrames, i++, If[i <= NumFramesBarrier, ParticleCoordinatesTable[[i]] = NextParticleCoordinatesBar[ParticleCoordinatesTable[[i - 1]]], ParticleCoordinatesTable[[i]] = NextParticleCoordinates[ParticleCoordinatesTable[[i - 1]]]];]; (*Plot full particle simulation*) makeplotbar[ParticleCoord_] := ListPlot[{ParticleCoord, {{xStartMax, 0}, {xStartMax, yMax}}}, Frame -> True, Axes -> False, PlotRange -> {{0, xMax}, {0, yMax}}, Joined -> {False, True}, PlotStyle -> {PointSize[.03], Thick}, AspectRatio -> yMax/xMax, FrameTicks -> None]; makeplot[ParticleCoord_] := ListPlot[ParticleCoord, Frame -> True, Axes -> False, PlotRange -> {{0, xMax}, {0, yMax}}, Joined -> False, PlotStyle -> PointSize[.03], AspectRatio -> yMax/xMax, FrameTicks -> None] ParticlesPlots = Join[Table[makeplotbar[ParticleCoordinatesTable[[i]]], {i, 1, NumFramesBarrier}], Table[makeplot[ParticleCoordinatesTable[[i]]], {i, NumFramesBarrier + 1, NumFrames}]]; (*Plot just the first particle in the list...Actually the fifth particle looks better. *) FirstParticleTable = {#[[5]]} & /@ ParticleCoordinatesTable; FirstParticlePlots = Join[Table[makeplotbar[FirstParticleTable[[i]]], {i, 1, NumFramesBarrier}], Table[makeplot[FirstParticleTable[[i]]], {i, NumFramesBarrier + 1, NumFrames}]]; (* Continuum solution *) (* I can use the simple diffusion-on-an-infinite-line formula, as long as I correctly periodically replicate the initial condition. Actually just computed nearest five replicas in each direction, that was a fine approximation. *) (* k = diffusion coefficient, visually matched to simulation. *) k = .0007; u[x_, t_] := If[t == 0, If[x <= xStartMax, 1, 0], 1/2 Sum[ Erf[(x - (-xStartMax + 2 n xMax))/Sqrt[4 k t]] - Erf[(x - (xStartMax + 2 n xMax))/Sqrt[4 k t]], {n, -5, 5}]]; ContinuumPlots = Join[ Table[Show[ DensityPlot[1 - u[x, 0], {x, 0, xMax}, {y, 0, yMax}, ColorFunctionScaling -> False, AspectRatio -> yMax/xMax, FrameTicks -> None], ListPlot[{{xStartMax, 0}, {xStartMax, yMax}}, Joined -> True, PlotStyle -> {Thick, Purple}]], {i, 1, NumFramesBarrier}], Table[ DensityPlot[1 - u[x, tt], {x, 0, xMax}, {y, 0, yMax}, ColorFunctionScaling -> False, AspectRatio -> yMax/xMax, FrameTicks -> None], {tt, 1, NumFramesNoBarrier}]]; (*Combine and export *) TogetherPlots = Table[GraphicsGrid[{{FirstParticlePlots[[i]]}, {ParticlesPlots[[i]]}, {ContinuumPlots[[i]]}}, Spacings -> Scaled[0.2]], {i, 1, NumFrames}]; Export["test.gif", Join[TogetherPlots, Table[Graphics[], {i, 1, 5}]], "DisplayDurations" -> {10}, "AnimationRepititions" -> Infinity ]
文件历史
点击某个日期/时间查看对应时刻的文件。
日期/时间 | 缩略图 | 大小 | 用户 | 备注 | |
---|---|---|---|---|---|
当前 | 2012年3月7日 (三) 13:41 | 360 × 300(402 KB) | Dratini0(留言 | 贡献) | Just removed the white last fram for aesthetic purposes, and prologed the display time of the last frame to mark the reatart of the animation. | |
2010年3月25日 (四) 19:37 | 360 × 300(402 KB) | Aiyizo(留言 | 贡献) | Optimized animation, converted to 256 color mode | ||
2010年1月16日 (六) 09:57 | 360 × 300(529 KB) | Sbyrnes321(留言 | 贡献) | sped up bottom panel to match better with middle panel | ||
2010年1月16日 (六) 09:46 | 360 × 300(508 KB) | Sbyrnes321(留言 | 贡献) | {{Information |Description={{en|1=Diffusion from a microscopic and macroscopic point of view. Initially, there are solute molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill |
您不可以覆盖此文件。
文件用途
以下页面使用本文件:
全域文件用途
以下其他wiki使用此文件:
- ar.wikipedia.org上的用途
- ast.wikipedia.org上的用途
- bn.wikipedia.org上的用途
- ca.wikipedia.org上的用途
- cy.wikipedia.org上的用途
- el.wikipedia.org上的用途
- en.wikipedia.org上的用途
- es.wikipedia.org上的用途
- et.wikipedia.org上的用途
- fa.wikipedia.org上的用途
- fi.wikipedia.org上的用途
- fr.wikipedia.org上的用途
- ga.wikipedia.org上的用途
- gl.wikipedia.org上的用途
- he.wikipedia.org上的用途
- hi.wikipedia.org上的用途
- is.wikipedia.org上的用途
- kk.wikipedia.org上的用途
- ko.wikipedia.org上的用途
- no.wikipedia.org上的用途
- pl.wikipedia.org上的用途
- pt.wikipedia.org上的用途
- ro.wikipedia.org上的用途
- sh.wikipedia.org上的用途
- sk.wikipedia.org上的用途
- sl.wikipedia.org上的用途
- sr.wikipedia.org上的用途
- ta.wikipedia.org上的用途
- uk.wikipedia.org上的用途
查看此文件的更多全域用途。