File:Fourier transform, Fourier series, DTFT, DFT.gif

Allikas: Wikimedia Commons
Mine navigeerimisribale Mine otsikasti

Algfail(1128 × 672 pikslit, faili suurus: 59 KB, MIME tüüp: image/gif)

Pealdised

Pealdised

Lisa üherealine seletus sellest, mida fail esitab
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.

Lühikirjeldus[muuda]

Kirjeldus
English: A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.
Kuupäev
Allikas Üleslaadija oma töö
Autor Bob K
Luba
(Faili edasikasutus)
Autoriõiguse omanikuna avaldan selle teose järgmise litsentsi all:
Creative Commons CC-Zero See fail on avaldatud Creative Commonsi üldise litsentsi CC0 1.0 all.
Isik, kes sidus teose selle litsentsiga, on andnud teose avalikku omandisse, loobudes üleilmselt seadusega lubatud ulatuses kõigist õigustest, mis tulenevad autoriõigusseadusest, sealhulgas autoriõigusega kaasnevatest õigustest ja naaberõigustest. Tohid teost kopeerida, muuta, levitada ja esitada; seda kõike luba küsimata ja ka ärilisel eesmärgil.

Teised versioonid File:Variations_of_the_Fourier_transform.tif, Derivative works of this file:  Fourier transform, Fourier series, DTFT, DFT.svg,
Vektorkujutis (SVG) sellest pildist on saadaval. Kui SVG-pilt paremat kvaliteeti võimaldab, tuleks seda rasterkujutise asemel kasutada.

File:Fourier transform, Fourier series, DTFT, DFT.gif → File:Fourier transform, Fourier series, DTFT, DFT.svg

Vektorgraafika kohta loe lisaks Commonsi abilehelt, metaviki abilehelt ja Vikipeediast.

Teistes keeltes
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
Uus vektorkujutis

GIF genesis
InfoField
 
See GIF-rasterkujutis on valmistatud rakendusega LibreOffice
Octave/gnuplot source
InfoField
click to expand

This graphic was created with the help of the following Octave script:

pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
  B = 0.1;
  N = 1024;
  t = T*(-N/2 : N/2-1);                         % 1xN
  y = exp(-B*t.^2);                             % 1xN
% The DTFT has a periodicity of 1/T=1.  Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
  X = [-4*N:4*N-1];                             % 1x8N
  xlimits = [min(X) max(X)];
  f = X/(8*N);
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
  Y = Y/max(Y);

% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
  T = 8/3;
  t = T*(-N/2 : N/2-1);                         % 1xN
  z = exp(-B*t.^2);                             % 1xN
% Resample the DTFT.
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Z = abs(z * W);                               % 1xN × Nx8N = 1x8N
  Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);

x1 = .08;                   % left margin for annotation
x2 = .02;                   % right margin
dx = .05;                   % whitespace between plots
y1 = .08;                   % bottom margin
y2 = .08;                   % top margin
dy = .12;                   % vertical space between rows
height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height;  % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1 +dx +width;
%=======================================================
% Plot the Fourier transform, S(f)

subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT

subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT

FFT_indices = [32:55]*128+1;
DFT_indices = [0:31 56:63]*128+1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on

Faili ajalugu

Klõpsa kuupäeva ja kellaaega, et näha sel ajahetkel kasutusel olnud failiversiooni.

Kuupäev/kellaaegPisipiltMõõtmedKasutajaKommentaar
viimane23. august 2019, kell 14:18Pisipilt versioonist seisuga 23. august 2019, kell 14:181128 × 672 (59 KB)Bob K (arutelu | kaastöö)re-color the portion of the DFT that is computed by the FFT
2. august 2014, kell 13:43Pisipilt versioonist seisuga 2. august 2014, kell 13:431348 × 856 (71 KB)Bob K (arutelu | kaastöö)User created page with UploadWizard

Globaalne failikasutus

Järgmised muud vikid kasutavad seda faili: