File:Lamb–Oseen vortex animation.gif

De Wikimedia Commons, el repositorio multimedia libre
Ir a la navegación Ir a la búsqueda

Lamb–Oseen_vortex_animation.gif (400 × 400 píxeles; tamaño de archivo: 3,46 MB; tipo MIME: image/gif, bucleado, 250 frames, 27s)

Leyendas

Leyendas

Añade una explicación corta acerca de lo que representa este archivo

Resumen

[editar]
Descripción
English: Animation of the Lamb–Oseen vortex equation in air, aging up to 25 seconds.

Viewed window size is 20 cm in width (out of an infinite air space). Floating particles show the movement of the fluid as well as local vorticity; the growing boundary between the rotational vortex core and the irrotational exterior can be clearly seen.

Viscosity = 1.5e-5 m^2/s (air under standard conditions), Circulation = 1e-2 m^2/s.

See also File:Rankine_vortex_animation.gif for the same done with a Rankine vortex.
Fecha
Fuente Trabajo propio
Autor Nanite

Source

[editar]
 
Este GIF gráfico fue creado con Matplotlib.
 
Esta imagen fue creada con ImageMagick.

Python source code. Requires matplotlib ImageMagick. Possibly does not run in Windows.

#!/usr/bin/env python3

import numpy as np
from scipy.special import expi
from matplotlib import pyplot as plt
from matplotlib import collections

twopi = 2*np.pi

# kinematic viscosity m^2/s
viscosity = 1.5e-5

# fixed circulation of the lamb-onseen vortex, m^2/s
circulation = 10e-3

# radial range in which to place particles, m
rmax = 0.2
rmark = 0.003 # radius of 'marker'
# number of particles
N = 600

# radial coordinate of particles, this does not change over time
# place them with sqrt of uniform 1D-distributed so they are uniform in 2D
part_r = rmax * np.sqrt(np.linspace(0, 1, N+1)[1:])
# precalculate some things
invr2 = 1/part_r**2
neg_tprime = -part_r**2 / (4 * viscosity) # negative of transition time for this radius
# angular coordinate of particles, set them randomly.
part_th = twopi*np.random.rand(N)
# rotation of particles - start them all out as horizontal
part_rot = np.zeros((N,))

dt = 0.01
i = 0

frames = []
frametimes = []
nextframetime = 0

fig = plt.figure()
fig.set_size_inches(4,4)
ax = plt.axes((0,0,1,1))
ax.set_xlim(-0.7*rmax, +0.7*rmax)
ax.set_ylim(-0.7*rmax, +0.7*rmax)
ax.set_aspect('equal')
ax.set_axis_off()

linesegs = np.empty((2*N, 2, 2))

while True:
    i += 1
    t = i*dt
    if t > 25:
        break

    # use finite difference to increment angular coordinate and rotation of particles.
    # we oould calculate these in closed form in terms of Ei(x) function, but this
    # is easy and good enough.
    part_th += (-dt * circulation / twopi) * np.expm1(neg_tprime/t) * invr2
    # note the rotation of particle is half of the vorticity.
    part_rot += (dt * circulation / (4*twopi*viscosity * t)) * np.exp(neg_tprime/t)

    # only show every tenth frame
    if i % 10 == 0:
        frame = f"frames/frame{i}.png"
        frames.append(frame)
        frametimes.append(t)

        [c.remove() for c in ax.lines]
        [c.remove() for c in ax.collections]
        [c.remove() for c in ax.texts]
        x = part_r*np.cos(part_th)
        y = part_r*np.sin(part_th)
        cr = rmark*np.cos(part_rot)
        sr = rmark*np.sin(part_rot)
        # first line segments of the crosses
        linesegs[0::2, 0, 0] = x + cr
        linesegs[0::2, 0, 1] = y + sr
        linesegs[0::2, 1, 0] = x - cr
        linesegs[0::2, 1, 1] = y - sr
        # second line segments of the crosses - perpendicular
        # note that having them distinct length or shade makes it visually MUCH easier to see
        # distinction between the rotational core and irrotational exterior, due to distinct texture.
        linesegs[1::2, 0, 0] = x - sr
        linesegs[1::2, 0, 1] = y + cr
        linesegs[1::2, 1, 0] = x + sr
        linesegs[1::2, 1, 1] = y - cr
        linecoll = collections.LineCollection(linesegs, linewidths=1, colors=((0., 0., 0.), (0.75, 0.75, 0.75)),
                               linestyle='solid')
        ax.add_collection(linecoll)

        [c.remove() for c in fig.texts]
        fig.text(0.01,0.01,f't = {t:.02f} s', fontsize='x-large', bbox=dict(facecolor='w', alpha=1))
        fig.savefig(frame)

# gif frame times are in centiseconds
delays = list(np.diff(np.round(np.array(frametimes) * 100)))
# show the last frame for a bit extra time
delays.append(delays[-1] + 200)

print(len(frames), len(delays))
assert(len(delays) == len(frames))

### Assemble animation using ImageMagick ###
calllist = 'convert'.split()
for delay,frame in zip(delays,frames):
    calllist += ['-delay',str(int(delay))]
    calllist += [frame]
calllist += '-loop 0 -layers Optimize _animation.gif'.split()
f = open('anim_command.txt','w')
f.write(' '.join(calllist)+'\n')
f.close()

print("composing into animated gif...", end='')
import sys, subprocess, os
sys.stdout.flush()
subprocess.call(calllist)
print("      done")
os.rename('_animation.gif','animation.gif')

Licencia

[editar]
Yo, el titular de los derechos de autor de esta obra, la publico en los términos de la siguiente licencia:
Creative Commons CC-Zero Este archivo está disponible bajo la licencia Creative Commons Dedicación de Dominio Público CC0 1.0 Universal.
La persona que ha asociado una obra a este documento lo dedica al dominio público mediante la cesión mundial de sus derechos bajo la ley de derechos de autor y todos los derechos legales adyacentes propios de dicha, en el ámbito permitido por ley. Puedes copiar, modificar, distribuir y reproducir el trabajo, incluso con objetivos comerciales, sin pedir aprobación del autor.

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual13:43 8 jun 2020Miniatura de la versión del 13:43 8 jun 2020400 × 400 (3,46 MB)Nanite (discusión | contribs.)Uploaded own work with UploadWizard

No hay páginas que enlacen a este archivo.

Uso global del archivo

Las wikis siguientes utilizan este archivo: