Category:Lattice theory

From Wikimedia Commons, the free media repository
Jump to: navigation, search
English: In mathematics, a lattice is a partially ordered set (also called a poset) in which any two elements have a unique supremum (the elements' least upper bound; called their join) and an infimum (greatest lower bound; called their meet). Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These "lattice-like" structures all admit order-theoretic as well as algebraic descriptions.

Subcategories

This category has the following 8 subcategories, out of 8 total.

D

H

I

J

L

L cont.

P

Pages in category "Lattice theory"

This category contains only the following page.

Media in category "Lattice theory"

The following 69 files are in this category, out of 69 total.