File:Gliese 12 b temperature if locked airless ocean planet 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(1,204 × 531 pixels, file size: 310 KB, MIME type: image/png)

Captions

Captions

Gliese 12 b temperature if locked airless ocean planet

Summary

[edit]
Description
English: Gliese 12 b temperature if locked airless ocean planet
Date
Source Own work
Author Merikanto

This image is based on Bells EBM

Python3 source code

# coding: utf-8

    1. EBM for trappist-1e
    2. based on Bell's energy balance model
    1. 27.05.2023 v 0000.0001c
    1. you must pip install . from directory or so on Bell EBM from github
    2. https://github.com/taylorbell57/Bell_EBM
    3. you must have Python 3
    4. copy directory to your computer, go the directoty, then "pip install ."
    1. https://bell-ebm.readthedocs.io/en/v1.3/

import numpy as np import scipy.ndimage import matplotlib.pyplot as plt import matplotlib as mpl import astropy.constants as const import Bell_EBM as ebm



    1. params of planet
  1. albedo=0.32
  2. albedo=0.70
    1. Trappist-1e
  1. rad=0.920
  2. mass=0.692
  3. a=0.02925
    1. Trappist-1c
  1. rad=1.097
  2. mass=1.308
  3. a=0.0158
  4. S=2.214
    1. Teq 339.7 K 66.6 C
    1. Trappist-1f
  1. rad=1.045
  2. mass=1.039
  3. a=0.03949
  4. S=0.242
  5. Teq=217.7, -55.5


  1. e=0.0
  2. argp=0
  3. obliquity=0


  1. star_teff=2550.
  2. star_rad=0.114
  3. star_mass=0.089


  1. star_teff=2511.
  2. star_rad=0.121
  1. star_mass=0.08



def simulate_ebm(groundtype1): ## gliese 12 albedo=0.3 star_teff=3296. star_rad=0.2617 star_mass=0.2414 rad=0.96 mass=0.85 a=0.0668 e=0.1 argp=0.0 simulen=1000 simustepj=1000 cp_N2 = 1.039e3 # J/(kg K) cp_H2O = 4.2e6 # J/(kg K) cp_rock = .800e6 # J/(kg K) # We'll pretend the whole atmosphere absorbs and radiates P0 = const.atm.value ## quite flat, maybe greenhouse model! planet = ebm.Planet(groundtype1, rad=const.R_earth.value*rad, mass=const.M_earth.value*mass,a=a*const.au.value, e=e, argp=argp, albedo=albedo)

#planet = ebm.Planet('rock', rad=const.R_earth.value*rad, mass=const.M_earth.value*mass,a=a*const.au.value, e=e, argp=argp, albedo=albedo) #planet = ebm.Planet('gas', rad=const.R_earth.value*rad, mass=const.M_earth.value*mass,a=a*const.au.value, e=e, argp=argp,cp=cp_N2, mlDepth=P0, albedo=albedo)

#star = ebm.Star() star = ebm.Star(teff=star_teff, rad=star_rad, mass=star_mass) system = ebm.System(star, planet) #system.planet.Prot = system.planet.Porb*(2./3.) system.planet.Prot = system.planet.Porb*(1./1.) Teq = np.median(system.get_teq(np.linspace(0.,system.planet.Porb,simustepj, endpoint=False))) T0 = Teq*np.ones_like(system.planet.map.values) t0 = 0 t1 = t0+system.planet.Porb*simulen dt = system.planet.Porb/simustepj times, maps = system.run_model(T0, t0, t1, dt, verbose=False) T0 = maps[-1] t0 = times[-1] t1 = t0+system.planet.Porb dt = system.planet.Porb/simustepj print("Running please wait ...") times, maps = system.run_model(T0, t0, t1, dt, verbose=False, intermediates=True) phases = system.get_phase(times) phasePeri = system.get_phase_periastron() indexPeri = np.argmin(np.abs(phases-phasePeri)) subStellLon = system.planet.orbit.get_ssp(system.planet.orbit.t_peri)[0] #mapp1=maps[indexPeri]-273.15 #mapps1=maps[indexPeri] ## take last orbit to average mapps1=maps[-simustepj:] #print(np.shape(mapps1)) mappa1=np.mean(mapps1, axis=0) mapp1=mappa1-273.15 tmean1=round(np.mean(mapp1),2) tmin1=round(np.min(mapp1),2) tmax1=round(np.max(mapp1),2) #print(" Temperature degC mean(grid) min max " , tmean1, tmin1, tmax1) return(mapp1)


mapp1=simulate_ebm("water")

  1. mapp2=simulate_ebm("rock")
  2. mapp3=simulate_ebm("gas")
  1. mappc1=(mapp1+mapp2+mapp3)/3


plotmapp1=mapp1

def fmt(x):

   s = f"{x:.2f}"
   return rf"{s} "

plt.title("Gliese 12 b temperature", fontsize=16) plt.xticks(fontsize=14) plt.yticks(fontsize=14)


plotmapp2 = scipy.ndimage.zoom(plotmapp1, 4)

levels1=[-300,-200,-180,-150,-120,-110,-100,-90,-80,-70,-60,-50,-40,-20,-10,-5,0,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,110,120,130,140,150,200,250,300,400,500,600,700,800,1000,2000,3000,4000]

contourcolours1=["#00003f"]

vmin1=-150 vmax1=150

cmap1="coolwarm" cmap1="jet" cmap1="bwr" cmap1="RdBu_r" cmap1="seismic" cmap1="RdYlBu_r" cmap1="Spectral_r" cmap1="hsv_r" cmap1="turbo"

  1. cmap1="rainbow"
  2. cmap1="gist_rainbow_r"

plt.imshow(plotmapp2,interpolation= "bicubic", cmap=cmap1, origin="lower", vmin=vmin1, vmax=vmax1, extent=[-180, 180, -90, 90]) CS=plt.contour(plotmapp2,alpha=0.5, extent=[-180, 180, -90, 90], levels=levels1 ,origin='lower', colors=contourcolours1) plt.clabel(CS, fontsize=14)



plt.show()




Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:17, 25 May 2024Thumbnail for version as of 17:17, 25 May 20241,204 × 531 (310 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata