File:Quadratic Golden Mean Siegel Disc Average Velocity - Gray.png
出典:ウィキメディア・コモンズ (Wikimedia Commons)
ナビゲーションに移動
検索に移動
このプレビューのサイズ: 800 × 587 ピクセル。 その他の解像度: 320 × 235 ピクセル | 640 × 469 ピクセル | 1,024 × 751 ピクセル | 1,280 × 939 ピクセル | 1,500 × 1,100 ピクセル。
元のファイル (1,500 × 1,100 ピクセル、ファイルサイズ: 436キロバイト、MIME タイプ: image/png)
ファイル情報
構造化データ
キャプション
概要
[編集]解説Quadratic Golden Mean Siegel Disc Average Velocity - Gray.png |
English: Quadratic Golden Mean Siegel Disc with interior coloured by Average Velocity along orbit ( shades of gray ) |
日付 | |
原典 | 投稿者自身による著作物 |
作者 | Adam majewski |
ライセンス
[編集]この作品の著作権者である私は、この作品を以下のライセンスで提供します。
このファイルはクリエイティブ・コモンズ 表示-継承 3.0 非移植ライセンスのもとに利用を許諾されています。
- あなたは以下の条件に従う場合に限り、自由に
- 共有 – 本作品を複製、頒布、展示、実演できます。
- 再構成 – 二次的著作物を作成できます。
- あなたの従うべき条件は以下の通りです。
- 表示 – あなたは適切なクレジットを表示し、ライセンスへのリンクを提供し、変更があったらその旨を示さなければなりません。これらは合理的であればどのような方法で行っても構いませんが、許諾者があなたやあなたの利用行為を支持していると示唆するような方法は除きます。
- 継承 – もしあなたがこの作品をリミックスしたり、改変したり、加工した場合には、あなたはあなたの貢献部分を元の作品とこれと同一または互換性があるライセンスの下に頒布しなければなりません。
Compare with
[編集]-
Boundary made with MIIM
-
Animated version
-
Average velocity - color version
-
Orbits inside Siegel Disc
-
visualisatio of dynamics newa parabolic fixed point ( sepals)
Images by Norbert Steinmetz from book "Rational Iteration. Complex Analytic Dynamical Systems" :
概要
[編集]- Julia set is drawn by
- finding boundary between bounded and unbounded orbits using Sobel filter
- DEM/J
- Interior of filled JUlia set by average discrete velocity ( Chris King method)[3]
C src code
[編集]
/*
c console program
It can be compiled and run under Linux, windows, Mac
It needs gcc
one can change :
- iSide ( width of image = iXmax = (15*iSide) it also changes IterationMax = (iXmax*50)
- distanceMax=PixelWidth*1; width of boundary ( JUlia set) is proportional to pixel width
- NrOfCircles = 5; number of orbits inside Siegel Disc and its preimages;
- method of coloring data[i]= 255 - ((int)(velocity*multiplier) % 255); color is proportional to velocity
Based on Chris King algorithm and code
[[:File:Golden_Mean_Quadratic_Siegel_Disc_Speed.png]]
-----------------------------------------
1.pgm file code is based on the code of Claudio Rocchini
http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
create 8 bit color graphic file , portable gray map file = pgm
see http://en.wikipedia.org/wiki/Portable_pixmap
to see the file use external application ( graphic viewer)
I think that creating graphic can't be simpler
---------------------------
2. first it creates data array which is used to store color values of pixels,
fills tha array with data and after that writes the data from array to pgm file.
It alows free ( non sequential) access to "pixels"
-------------------------------------------
Here are 4 items :
1. complex plane Z with points z = zx+zy*i ( dynamic plane and world coordinate )
2. virtual 2D array indexed by iX and iYmax ( integer or screen coordinate )
3. memory 1D arrays data ( and edge) indexed by i =f(iX,iY)
4. pgm file
Adam Majewski fraktal.republika.pl
to compile :
gcc v.c -lm -Wall
to run ( Linux console) :
./a.out
*/
# include <stdio.h>
# include <stdlib.h>
# include <math.h>
# include <string.h>
/* iXmax/iYmax = 11/15 */
const int iSide = 1000;
int iXmax ; /* width of image in pixels = (15*iSide); */
int iYmax ;
int iLength ;
/* */
const double ZxMin = -1.5;
const double ZxMax = 1.5;
const double ZyMin = -1.1;
const double ZyMax = 1.1;
/* (ZxMax-ZxMin)/(ZyMax-ZyMin)= iXmax/iYmax */
int IterationMax ; /* */
double PixelWidth ;
double PixelHeight ;
/* fc(z) = z*z + c */
/* Golden_Mean_Quadratic_Siegel_Disc */
const double Cx = -0.390540870218399; /* C = Cx + Cy*i */
const double Cy = -0.586787907346969;
/* radius of circle around origin; its complement is a target set for escaping points */
const double EscapeRadius = 2.0 ;
double ER2 ;
/* colors */
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
const int iExterior = 245; /* exterior of Julia set */
const int iJulia = 0; /* border , boundary*/
const int iInterior = 230;
/* z fixed ( z=z^2 +c ) it is a center of Siegel Disc */
double zfx = -0.368684439039160, zfy= -0.337745147130762;
double GiveDistanceFromCenter(double zx, double zy)
{double dx,dy;
dx=zx-zfx;
dy=zy-zfy;
return sqrt(dx*dx+dy*dy);
}
double GiveInternalSiegelDiscRadius()
{ /* compute critical orbit and finds smallest distance from fixed point */
int i; /* iteration */
double Zx=0.0, Zy=0.0; /* Z = Zx + Zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
/* center of Siegel disc */
double Distance;
double MinDistance =2.0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (i=0;i<=400 ;i++)
{
Zy=2*Zx*Zy + Cy;
Zx=Zx2-Zy2 +Cx;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
/* */
Distance= GiveDistanceFromCenter(Zx,Zy);
if (MinDistance>Distance) MinDistance=Distance; /* smallest distance */
}
return MinDistance;
}
/* escape time to infinity of function fc(z) = z*z + c */
int GiveExtLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _ER2, double SiegelRadius)
{
int i; /* iteration */
double Zx, Zy; /* Z = Zx + Zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
Zx=_Zx0; /* initial value of orbit */
Zy=_Zy0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (i=0;i<=iMax && ((Zx2+Zy2)<_ER2);i++)
{
Zy=2*Zx*Zy + C_y;
Zx=Zx2-Zy2 +C_x;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
/* do not fall int infinite loop inside Siegel disc */
if (GiveDistanceFromCenter(Zx,Zy)<=SiegelRadius) i=iMax;
};
return i; /* last iteration */
}
/* AverageVelocity along orbit =sum(dn)/n */
double GiveAverageVelocity(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _ER2)
{
int i; /* iteration */
double pZx, pZy; /* pZ = Zx + Zy*i previous*/
double nZx, nZy; /* next nZ = pZ*pZ + c */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
double sum=0.0;
double dx,dy, distance=0.0; /* distance= sqrt(dx*dx+dy*dy); */
pZx=_Zx0; /* initial value of orbit */
pZy=_Zy0;
Zx2=pZx*pZx;
Zy2=pZy*pZy;
for (i=0;i<=iMax && ((Zx2+Zy2)<_ER2);i++)
{
nZy=2*pZx*pZy + C_y;
nZx=Zx2-Zy2 + C_x;
Zx2=nZx*nZx;
Zy2=nZy*nZy;
/* */
dx=(nZx-pZx);
dy=nZy-pZy;
distance= sqrt(dx*dx+dy*dy);
sum+=distance;
/* */
pZx=nZx;
pZy=nZy;
};
return sum/i; /* */
}
/*
estimates distance from point c to nearest point in Julia set
for Fc(z)= z*z + c
z(n+1) = Fc(zn)
this function is based on function mndlbrot::dist from mndlbrot.cpp
from program mandel by Wolf Jung (GNU GPL )
http://www.mndynamics.com/indexp.html
Hyunsuk Kim :
For Julia sets, z is the variable and c is a constant. Therefore df[n+1](z)/dz = 2*f[n]*f'[n] -- you don't add 1.
For the Mandelbrot set on the parameter plane, you start at z=0 and c becomes the variable. df[n+1](c)/dc = 2*f[n]*f'[n] + 1.
*/
double jdist(double Zx, double Zy, double Cx, double Cy , int iter_max)
{
int i;
double x = Zx, /* Z = x+y*i */
y = Zy,
/* Zp = xp+yp*1 = 1 */
xp = 1,
yp = 0,
/* temporary */
nz,
nzp,
/* a = abs(z) */
a;
for (i = 1; i <= iter_max; i++)
{ /* first derivative zp = 2*z*zp = xp + yp*i; */
nz = 2*(x*xp - y*yp) ;
yp = 2*(x*yp + y*xp);
xp = nz;
/* z = z*z + c = x+y*i */
nz = x*x - y*y + Cx;
y = 2*x*y + Cy;
x = nz;
/* */
nz = x*x + y*y;
nzp = xp*xp + yp*yp;
if (nzp > 1e60 || nz > 1e60) break;
}
a=sqrt(nz);
/* distance = 2 * |Zn| * log|Zn| / |dZn| */
return 2* a*log(a)/sqrt(nzp);
}
unsigned int f(unsigned int _iX, unsigned int _iY)
/*
gives position of point (iX,iY) in 1D array ; uses also global variables
it does not check if index is good so memory error is possible
*/
{return (_iX + (iYmax-_iY-1)*iXmax );}
/* --------------------------------------------------------------------------------------------------------- */
int main(){
/* sobel filter */
unsigned char G, Gh, Gv;
/* */
double velocity;
const int NrOfCircles = 5; /* number of orbits inside Siegel Disc and its preimages; */
int multiplier = NrOfCircles * 2 * 255; /* it is used to find gray level ; value found by Trial and error method */
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
iXmax = (15*iSide); /* height of image in pixels */
iYmax = (11*iSide);
iLength = (iXmax*iYmax);
int LastIteration;
IterationMax = (iXmax*50);
double Zx,Zy;
PixelWidth = ((ZxMax-ZxMin)/iXmax);
PixelHeight = ((ZyMax-ZyMin)/iYmax);
double distance;
double distanceMax=PixelWidth; /* width of boundary is related with pixel width */
ER2 = (EscapeRadius*EscapeRadius);
/* dynamic 1D arrays for colors ( shades of gray ) */
unsigned int i; /* index of 1D array */
unsigned char *data, *edge;
data = malloc( iLength * sizeof(unsigned char) );
edge = malloc( iLength * sizeof(unsigned char) );
if (data == NULL || edge==NULL )
{
fprintf(stderr," Could not allocate memory");
return 1;
}
else printf(" memory is OK\n");
double SiegelRadius=GiveInternalSiegelDiscRadius();
printf(" Siegel Internal Radius = %f \n",SiegelRadius );
printf(" fill the data array \n");
for(iY=0;iY<iYmax;++iY){
Zy=ZyMin + iY*PixelHeight; /* */
if (fabs(Zy)<PixelHeight/2) Zy=0.0; /* */
printf(" row %u from %u \n",iY, iYmax);
for(iX=0;iX<iXmax;++iX){
Zx=ZxMin + iX*PixelWidth;
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
LastIteration = GiveExtLastIteration(Zx, Zy, Cx, Cy, IterationMax, ER2, SiegelRadius );
/* color of pixels */
if ( LastIteration < IterationMax ) /* exterior - unbounded orbits*/
{
distance=jdist(Zx,Zy,Cx,Cy,IterationMax);
if (distance<distanceMax) {
data[i] = iJulia;
edge[i] = iJulia;
}
else {data[i] = iExterior;
edge[i] = iExterior; }
}
else /* interior - bounded orbits */
{velocity= GiveAverageVelocity(Zx,Zy,Cx,Cy,400,ER2); /* only 200 iterations !!!! */
data[i]= 255 - ((int)(velocity*multiplier) % 255); /* color is proportional to velocity */
edge[i] = iInterior;}
/* if (Zx>0 && Zy>0) data[i]=255-data[i]; check the orientation of Z-plane by marking first quadrant */
}
}
printf(" find boundaries in edge array using Sobel filter and copy boundary to data array\n");
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX){
Gv= edge[f(iX-1,iY+1)] + 2*edge[f(iX,iY+1)] + edge[f(iX-1,iY+1)] - edge[f(iX-1,iY-1)] - 2*edge[f(iX-1,iY)] - edge[f(iX+1,iY-1)];
Gh= edge[f(iX+1,iY+1)] + 2*edge[f(iX+1,iY)] + edge[f(iX-1,iY-1)] - edge[f(iX+1,iY-1)] - 2*edge[f(iX-1,iY)] - edge[f(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G!=0) {data[i]=iJulia;} /* boundary */
}
}
/* ---------- file -------------------------------------*/
printf(" save data array to the pgm file \n");
FILE * fp;
char name [10]; /* name of file */
i = sprintf(name,"r1IterationMax%u",IterationMax); /* result (is saved in i) but is not used */
char *filename =strcat(name,".pgm");
char *comment="# C= ";/* comment should start with # */
/* save image to the pgm file */
fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode */
fprintf(fp,"P5\n %s\n %u\n %u\n %u\n",comment,iXmax,iYmax,MaxColorComponentValue); /*write header to the file*/
fwrite(data,iLength,1,fp); /*write image data bytes to the file in one step */
printf("File %s saved. \n", filename);
fclose(fp);
/* --------------free memory ---------------------*/
free(data);
return 0;
}
References
[編集]ファイルの履歴
過去の版のファイルを表示するには、その版の日時をクリックしてください。
日付と時刻 | サムネイル | 寸法 | 利用者 | コメント | |
---|---|---|---|---|---|
現在の版 | 2011年11月11日 (金) 17:35 | 1,500 × 1,100 (436キロバイト) | Soul windsurfer (トーク | 投稿記録) |
このファイルは上書きできません。
ファイルの使用状況
以下の 5 ページがこのファイルを使用しています:
グローバルなファイル使用状況
以下に挙げる他のウィキがこの画像を使っています:
- en.wikipedia.org での使用状況
- en.wikibooks.org での使用状況
- ja.wikipedia.org での使用状況
メタデータ
このファイルには、追加情報があります (おそらく、作成やデジタル化する際に使用したデジタルカメラやスキャナーが追加したものです)。
このファイルが元の状態から変更されている場合、修正されたファイルを完全に反映していない項目がある場合があります。
PNGファイルのコメント |
|
---|