User:Adam majewski

From Wikimedia Commons, the free media repository
Jump to: navigation, search

Wikipedia-logo.pngWikipedia - my page in wiki

home page.


Wikibooks -en - Adam majewski

My Dropbox public folders

Mathematics Stack Exchange MathOverflow Wikibooks -pl - Adam majewski

My uploads


Photographer Barnstar.png The Photographer's Barnstar
foto

Julia sets for fc(z) = z*z + c[edit]

0.3305 + 0.06i[1]

0.253930 + 0.000480i.

0.27310 + 0.006990i.

−0.200062 + 0.807120i.

http://yozh.org/2011/03/14/mset006/

0.3-0.49i

-0.75 -0.1i ; ( outside Mandelbrot set ) -0.7589-0.0753i http://social-biz.org/2010/03/28/generating-chaos/

const double Cx=-0.74543; const double Cy=0.11301;

-0.808 +0.174i;

-0.1 +0.651i; ( beween 1 and 3 period component of Mandelbrot set )

-0.294 +0.634i

San Marco Fractal = Basilica : c = - 3/4

3 petals[edit]

C= -0.125 +0.649519 i

Siegel Disk[edit]

Julia set = Jordan curve Irrational recurrent cycles

  • 0.59...+i0.43...
  • 0.33...+i0.07...
  • C= -0.408792866 -0.577405 i
  • c=-0.390541-0.586788i

Other[edit]

Feigenbaum: C= -1.4011552 +0.0 i

Tower: C= -1 + 0.0 i

Cauliflower: C= 0.25 +0.0 i

Dendrite[edit]

Critical point eventually periodic 0 > -2 > 2 (fixed).

C= i

c^3 + 2c^2 +2c +2 =0

Other[edit]

Circle: C= 0.0 +0.0 i

Segment: C= -2 +0.0 i

Superattracting per 3 (up to complex conjugate)[edit]

C= -1.75488 (airplane)

C= -0.122561 + 0.744862 i (rabbit) Douady's Rabbit Rabbit: C= -0.122561 +0.744862 i = ( -1/8+3/4 i ??? ) whose critical point 0 is on a periodic orbit of length 3


Superattracting per 4 (up to complex conjugate)[edit]

C= -1.9408

C= -1.3107

C= -1.62541

C= -0.15652 +1.03225 i

C= 0.282271 +0.530061 i

Superattracting per 5 (up to complex conjugate)[edit]

C= -1.98542

C= -1.86078

C= -1.62541

C= -1.25637 +0.380321 i

C= -0.50434 +0.562766 i

C= -0.198042 +1.10027 i

C= -0.0442124 +0.986581 i

C= 0.359259 +0.642514 i

C= 0.379514 +0.334932 i

A superattracting per 15[edit]

C= -0.0384261 +0.985494 i

Machine-readable_data[edit]

SVG[edit]

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">


Links :

Help[edit]

differences between :

Authority control


[[1]]


==Compare with==

<gallery caption="Sample gallery" widths="100px" heights="100px" perrow="6">

</gallery>

</nowiki>

Change in your preferences : Show hidden categories

syntaxhighlight[edit]

GeSHi[edit]

description:

g;
a=2;



source templetate[edit]

ssssssssssssss


wikitable collapsible collapsed[edit]



navbox collapsible collapsed = Template:Source_code[edit]

w:Template:Source_code

prettytable[edit]

Icon Mathematical Plot.svg      Mathematical Function Plot
Description Function displaying a cusp at (0,1)
Equation y=\sqrt{|x|}+1
Co-ordinate System Cartesian
X Range -4 .. 4
Y Range -0 .. 3
Derivative \frac{dy}{dx}= \frac{1}{2 \sqrt{x}}
 
Points of Interest in this Range
Minima \left( 0, 1 \right)\,
Cusps \left( 0, 1 \right)\,
Derivatives at Cusp \lim_{x \to 0^+}f'(x) = +\infty,

 \lim_{x \to 0^-}f'(x) = -\infty

Language[edit]

references[edit]

  1. fractal_ken An "escape time" fractal generated by homemade software using recurrence relation z(n) = z(n - 1)^2 + 0.3305 + 0.06i