File:RoundTripToVega.gif

出自Wikimedia Commons
跳至導覽 跳至搜尋

RoundTripToVega.gif (425 × 165 像素,檔案大小:520 KB,MIME 類型:image/gif、​循環、​51 畫格、​51秒)

說明

說明

添加單行說明來描述出檔案所代表的內容

摘要

[編輯]
描述
English: The local nature of time: Four clocks on a 1-gee constant proper-acceleration round-trip shuttle to and from Vega 25 lightyears away, as seen from the ship's point of view. The one-way trip takes about 6.6 traveler years and about 27 map years, with turn-around points for the ship's proper-acceleration/deceleration halfway between earth and Vega.

Although the earth-clock (whose concurrent value on the left clock-face is obtained unambiguously from a radar-time calculation) and the local map-clocks (right clock-face) are synchronized from the earth's point of view, they are only synchronized from the ship's point of view when our ship is docked, either at home (blue dot) or at Vega (green dot).

Inspired by clocks on the spaceship wall in a sci-fi novel[1], this animation also illustrates the relativity of simultaneity in a less abstract way than is usually done with help from constant-speed (Lorentz-transform) models that allow neither acceleration nor curved-spacetime. In this case the extended-simultaneity model used for the two "distant-location clocks" on each end is the much more robust radar-time model discussed by Dolby and Gull[2].

The faded red clock hands on the Sol and Vega clocks show "tangent free-float-frame" time rates of change, which require a moving frame of synchronized clocks embedded in flat spacetime. The green dashed lines correspond to past events on the corresponding "far-away" clock which we've not yet detected, while the green dotted lines correspond to future events there on which our subsequent actions can have no effect.

The green shaded regions therefore correspond to a "causality gap" of events on that clock from which we are presently isolated. For most practical purposes, therefore, "present" time on that clock might be imagined to be anywhere in the shaded region.
日期
來源 自己的作品
作者 P. Fraundorf

Added notes

[編輯]

This animation also highlights an unavoidable property of far-away events in space-time, since the direction of your world-line matters: When on your clock a far-away event happens is not set in stone until such time as light-rays from that event have the chance to reach you. As a result the readings on the far-away clocks above (on either end of the animation) depend on the assumption that the voyage will continue as planned.

Equation appendix

[編輯]

The figure was drawn using Mathematica. At some point we may add code here to construct a roundtrip to any destination that you like. First, however, some notes on the relationships used are provided here.

the trajectory

[編輯]

Let's start by imagining that our traveler starts from rest at xo=c2/α, to=0, and the trip is divided into quarters. The first quarter involves acceleration rightward, the second two quarters involve acceleration leftward before and after a destination event at {2xc, 2tc}, while the fourth involves acceleration rightward again to bring the traveler to rest back home.

First take a look the velocity-measure most simply connected to acceleration, namely hyperbolic velocity angle or rapidity η, as a function of traveler-time τ and the quarter round-trip turn-around time τc:

.

This is useful because rapidity in turn relates simply to other speed measures in (1+1)D, including proper-velocity w ≡ dx/dτ = c sinh[η], coordinate-velocity v ≡ dx/dt = c tanh[η], and Lorentz-factor γ ≡ dt/dτ = cosh[η]. Hence we can integrate them to determine map-time elapsed and distance traveled. In perhaps simplest form, the resulting integrals for each constant proper-acceleration segment may be written as:

.

The map-trajectory for galactic-coordinates {x,t}, parameterized using traveler time τ and the quarter round-trip turn-around time τc, looks something like:

,

and

.

Here tc ≡ (c/α)sinh[ατc/c] and xc ≡ (c2/α)(cosh[ατc/c]-1) are galactic map-coordinates for the first turn-around event at traveler-clock time τc. In terms of the destination distance xd = 2xc on the galactic map, this second equation suggests that the total roundtrip time on traveler-clocks is Δτround ≡ 4τc = 4(c/α)acosh[1+(α/c2)xd/2]. Does that look right?

causality-gap

[編輯]

For the A and B destinations at the left and right ends (respectively) of the shuttle's oscillation, the causality limits look something like:

, and
.

Of course centered in this causality-gap is the local map-time t[τ].

tangent-fff equations

[編輯]

The tangent free-float-frame time of events for a star along our trajectory at the A and B positions may look something like:

, and
.

This equation arises because -1 ≤ tanh[η] ≤ +1 is dt/dx for fixed time-isocontours associated with an extended frame of yardsticks and synchronized clocks which is moving relative to the fixed axes of an x-ct plot in flat spacetime.

radar-separation equations

[編輯]

We discuss these with c=1 and α=1 to minimize sprawl. In all for a constant proper-acceleration roundtrip there are four function changes, 5 intervals, and thus 5×5=25 zones involved. The plan for each of these 25 zones is to solve radar time τ[t,x] ≡ ½(τ+[t,x]+τ-[t,x]) = τo where τ+[t,x] solves u=uB+] and τ-[t,x] solves v=vB-]. These in turn have been used (e.g. here) to plot radar isochrons and radar-distance grid lines for proper time/distance intervals of 0.2c2/α for all 25 zones is an x-ct diagram's field of view.

Using the linked example figure, for example working our way up from the magenta-shaded 00 zone at the bottom center of the traveler world line, we get for the radar isochrons:

,

and for the radar-distance contours in the same zones:

.

To create the plot above, similar functions are needed for all 25 hk zones, where h={0,1,2,3,4} and k={0,1,2,3,4}.

The twelve zones 01, 02, 03, 10, 14, 20, 24, 30, 34, 41, 42 and 43 may require the principal value (0th branch) of the Lambert W or product log function defined implicitly by z = WeW, namely

The remaining eight zones, namely 04, 12, 13, 21, 23, 31, 32, and 40, can be written out explicitly.

Footnotes

[編輯]
  1. Mary Doria Russell (2008) The Sparrow (Random House, NY).
  2. Carl E. Dolby and Stephen F. Gull (2001) "On radar time and the twin paradox", Amer. J. Phys. 69 (12) 1257-1261 abstract.

授權條款

[編輯]
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
w:zh:共享創意
姓名標示 相同方式分享
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2016年1月19日 (二) 20:20於 2016年1月19日 (二) 20:20 版本的縮圖425 × 165(520 KB)Unitsphere對話 | 貢獻Add thrust-reversal dots on the ship clock, and correct the tangent-fff arrow dynamics.
2016年1月18日 (一) 15:25於 2016年1月18日 (一) 15:25 版本的縮圖425 × 165(519 KB)Unitsphere對話 | 貢獻Added "causality windows" to the Sol and Vega clocks.
2014年8月28日 (四) 12:21於 2014年8月28日 (四) 12:21 版本的縮圖425 × 165(477 KB)Unitsphere對話 | 貢獻Add a fourth clock to show symmetry in origin and destination "far-away" times.
2014年5月17日 (六) 00:28於 2014年5月17日 (六) 00:28 版本的縮圖360 × 183(493 KB)Unitsphere對話 | 貢獻User created page with UploadWizard

沒有使用此檔案的頁面。

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

詮釋資料