Category:Galilean transformation

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
<nowiki>transformación de Galileo; Galilei-transzformáció; Галилей салыстырмалылық принципі; Galileoren transformazio; преобразование Галилея; Galilei-Transformation; Пераўтварэнні Галілея; ترادیسی‌های گالیله; 伽利略变换; Galilei-transformation; Galile dönüşümü; ガリレイ変換; Galileitransformation; טרנספורמציית גליליי; 伽利略變換; 伽利略變換; 伽利略变换; Galileitransformation; 갈릴레이 변환; Галилей салыстырмалылық принципі; Galileja transformo; Galileovy transformace; 伽利略变换; trasformazione galileiana; গ্যালিলীয় রূপান্তর; transformations de Galilée; Transformació de Galileu; Galilei teisendus; Transformación de Galileo; Galileiho transformácie; Галилееви трансформации; перетворення Галілея; ਗੈਲੀਲੀਅਨ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ; 伽利略變換; transformação de Galileu; گالىيلەي سالىستىرمالىلىق ٴپرىينتسىيپى; Galïleý salıstırmalılıq prïncïpi; گالىيلەي سالىستىرمالىلىق ٴپرىينتسىيپى; transformacja Galileusza; Galilejeva transformacija; Галилей салыстырмалылық принципі; Galïleý salıstırmalılıq prïncïpi; 伽利略变换; Transformasi Galilei; galileitransformasjon; Galileitransformasjon; Galileijeve transformacije; गैलिलियो रूपांतरण; Գալիլեյի ձևափոխություններ; Галилей улшăвĕсем; Галилееви преобразби; Galilean transformation; تحويل جاليليو; Μετασχηματισμοί Γαλιλαίου; Galileijeve transformacije; 座標変換の方法の一つ; Koordinatentransformation zwischen Inertialsystemen; 在不同参考系之间变换的方法; transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics; Elkarrekiko abiadura konstantez eta biraketarik gabe (translazio hutsez) higitzen ari diren bi erreferentzia-sistematako posizio-bektoreen eta denbora-neurketen arteko erlazioak adierazten dituen ekuazioek osatzen duten transformazioa.; 在不同参考系之间变换的方法; 在不同参考系之间变换的方法; Transformacion de Galileo; Transformations de Galilee; Transformation galiléenne; Transformation de Galilee; Transformation de Galilée; Galilei teisendused; transformazio galilear; Галилея преобразования; Галилеевы преобразования; преобразования Галилея; Galileitransformation; Galilei-Invarianz; Galileinvarianz; Galilei-Gruppe; Transformação galileana; Transformações de Galileu; ترادیسی های گالیله; تبدیلات گالیله; 伽利略轉換; 伽利略递升; ガリレイの相対性原理; ガリレイ群; טרנספורמציית גלילאו; Galilei-transformation; przekształcenie Galileusza; Принцип Галілея; Galileova transformace; Galileiho transformace; 伽利略遞升; 伽利略递升; trasformazioni galileiane; trasformazione di Galileo; trasformazioni di Galileo; 갈릴레이-뉴턴 상대론; Galilean group; Transformacións de Galileo; Relatividade de Galileo; 伽利略递升; Галилейдің салыстырмалылық принципі</nowiki>
Galilean transformation 
transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics
Upload media
Instance of
Subclass of
Named after
Discoverer or inventor
Has part(s)
Authority control
Wikidata Q219207
GND ID: 4375306-1
BabelNet ID: 02314448n
Edit infobox data on Wikidata
English: In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout below). Without the translations in space and time the group is the homogeneous Galilean group. The Galilean group is the group of motions of Galilean relativity action on the four dimensions of space and time, forming the Galilean geometry. This is the passive transformation point of view. The equations below, although apparently obvious, are valid only at speeds much less than the speed of light. In special relativity the Galilean transformations are replaced by Poincaré transformations; conversely, the group contraction in the classical limit c → ∞ of Poincaré transformations yields Galilean transformations.

Media in category "Galilean transformation"

The following 9 files are in this category, out of 9 total.