File:A-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s007.ogv
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this JPG preview of this OGG file: 800 × 450 pixels. Other resolutions: 320 × 180 pixels | 640 × 360 pixels | 1,280 × 720 pixels.
Original file (Ogg Theora video file, length 30 s, 1,280 × 720 pixels, 3.25 Mbps, file size: 11.61 MB)
File information
Structured data
Captions
Summary
[edit]DescriptionA-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s007.ogv |
English: Walking hexapod with m = 5. For the indicated value of m, 100 CRBMs were trained and the best one was chosen for presentation here. The right-hand side shows the walking behavior of two hexapods, of which one is opaque, while the second one is transparent. The transparent hexapod is controlled by the open-loop sinusoidal controller and displays the target behavior that was used to train the CRBMs. The behavior of the trained CRBM is shown in form of the opaque hexapod. We chose to include both behaviors in the video so that performance of the trained CRBM can be directly compared with the target behavior. The left-hand side in each video shows the internals of the CRBM. From top to bottom: The six squares with the moving blue lines show the raw sensor values for each leg, i.e., the angular values for the knee and shoulder joint over a period of 10 time steps (one second). Below, the activations of the CRBM neurons are shown in the following order (from top to bottom): input layer, hidden layer, output layer. A white box refers to an activation value of 1, while black refers to an activation of 0. The left-hand side is complete with the lower six squares which show how the binary output units translate to motor commands. The orange lines in each square on to the bottom show the motor commands for the knee and shoulder joint of one leg for 10 time steps (1 second). |
||
Date | |||
Source | S1 Video from Montúfar G, Ghazi-Zahedi K, Ay N (2015). "A Theory of Cheap Control in Embodied Systems". PLOS Computational Biology. DOI:10.1371/journal.pcbi.1004427. PMID 26325254. PMC: 4556690. | ||
Author | Montúfar G, Ghazi-Zahedi K, Ay N | ||
Permission (Reusing this file) |
This file is licensed under the Creative Commons Attribution 4.0 International license.
|
||
Provenance InfoField |
|
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 13:51, 18 October 2016 | 30 s, 1,280 × 720 (11.61 MB) | Open Access Media Importer Bot (talk | contribs) | Automatically uploaded media file from Open Access source. Please report problems or suggestions here. |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
Transcode status
Update transcode statusMetadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Short title | Walking hexapod with m |
---|---|
Author | Montúfar G, Ghazi-Zahedi K, Ay N |
Usage terms | http://creativecommons.org/licenses/by/4.0/ |
Image title | For the indicated value of m, 100 CRBMs were trained and the best one was chosen for presentation here. The right-hand side shows the walking behavior of two hexapods, of which one is opaque, while the second one is transparent. The transparent hexapod is controlled by the open-loop sinusoidal controller and displays the target behavior that was used to train the CRBMs. The behavior of the trained CRBM is shown in form of the opaque hexapod. We chose to include both behaviors in the video so that performance of the trained CRBM can be directly compared with the target behavior. The left-hand side in each video shows the internals of the CRBM. From top to bottom: The six squares with the moving blue lines show the raw sensor values for each leg, i.e., the angular values for the knee and shoulder joint over a period of 10 time steps (one second). Below, the activations of the CRBM neurons are shown in the following order (from top to bottom): input layer, hidden layer, output layer. A white box refers to an activation value of 1, while black refers to an activation of 0. The left-hand side is complete with the lower six squares which show how the binary output units translate to motor commands. The orange lines in each square on to the bottom show the motor commands for the knee and shoulder joint of one leg for 10 time steps (1 second). |
Software used | Xiph.Org libtheora 1.1 20090822 (Thusnelda) |
Date and time of digitizing | 2015-09 |