Julia set
Jump to navigation
Jump to search
English: The Julia set is a fractal. It was first created by the French mathematician Gaston Julia. The set was then long forgotten until Benoît Mandelbrot (who was taught by Julia in the 40s), made a work about it in the early 1980s. See also: Mandelbrot set.
Slovenščina: Juliajeva množica je fraktal. Prvi ga je opisal francoski matematik Gaston Julia. Množica je nato dolgo časa ostala pozabljena, dokler ni o njej v zgodnjih 1980-ih napisal knjige (Juliajev učenec v 40-ih). Glejte tudi: Mandelbrotova množica.
Polski: Zbiór Julii to fraktal. Pierwszy opisał i stworzył go francuski matematyk Gaston Julia. Zobacz też: Zbiór Mandelbrota.
-
Julia-Menge
-
From the escape-time function
-
Special colour-mapping
-
Detail of centerpart
-
Detail of centerpart
-
Highres image
-
Highres image
-
From the reversed formula.
-
From the reversed formula.
-
From the reversed formula.
-
From the reversed formula.
-
Quaternion set, (4D).
-
From the reversed formula.
-
Time escape Julia set from coordinate (phi-2, phi-1)
-
Time escape Julia set from coordinate (1-phi, 0)
-
Time escape Julia set from coordinate (-0.297491, -0.641051)
-
Image:Time escape Julia set from coordinate (0.285, 0)
-
Julia set for c=i made with IIM
-
Julia Set using z = z^2 + c, where c = -0.8+0.156i
-
Julia Set using z = z^10 + c where c = -0.925 + 0.19i
-
Julia Set using z = z^12 + c where c = -0.89511414 + 0.1i
-
Level curves of escape time
-
Filled-in Julia set
-
Binary decomposition of basin of attraction of infinity and finite attractor
-
Modified IIM
-
Fatou components
-
Modified IIM and critical orbit
-
Julia set of a cubic polynomial
-
z→z²-0.742+0.1i
-
Inner Structure of Julias: Cell-like
-
Inner Structure of Julias: Binary Fractal
-
Inner Structure of Julias: Similarity and Distortion
-
Inner Structure of Julias: Cell clusters
-
Inner Structure of Julias: Braids
-
Inner Structure of Julias: Coccid
Map of Julia sets
[edit]-
Map of the set.
-
Julia set for values of c ranging from -2.2-1.2i to 0.6+1.2i
3D
[edit]-
3D slice of a 4D Quaternion set
Animations
[edit]-
animated zoom of z→z²+c for fixed c
-
Julia set fractal animation
-
JUlia set (white) for z→z²+c as c changes
-
Animated 3D slice of a 4D Quaternion set
Miscellaneous
[edit]-
a scenery render of a julia set.
-
Julia Set in Mandel: Fatou set
-
Julia set in Mandel: Structure, see above
-
Description of the dynamics inside the Douady's rabbit.