Category:Set theory
Jump to navigation
Jump to search
branch of mathematics that studies sets, which are collections of objects | |||||
Upload media | |||||
Instance of |
| ||||
---|---|---|---|---|---|
Part of |
| ||||
Discoverer or inventor | |||||
| |||||
![]() |
Subcategories
This category has the following 32 subcategories, out of 32 total.
*
A
- Axiom of choice (5 F)
B
C
- Cantor's theorem (2 F)
- Chapman's Problem (4 F)
- Complement (set theory) (15 F)
- Set cover problem (6 F)
D
- De Morgan's law (14 F)
- Density of the set (13 F)
E
H
I
N
- Near sets (11 F)
O
P
R
- Randolph diagrams (16 F)
S
U
V
Media in category "Set theory"
The following 106 files are in this category, out of 106 total.
- Algebra1 ins fig002 insii.svg 155 × 76; 11 KB
- Algebra1 ins fig008 unii.svg 219 × 173; 19 KB
- Algebra1 ins fig009 uniii.svg 218 × 173; 29 KB
- Algebra1 ins fig012 interi.svg 254 × 173; 19 KB
- Algebra1 ins fig012a disti.svg 480 × 130; 31 KB
- Algebra1 ins fig014 difi.svg 271 × 173; 19 KB
- Algebra1 ins fig015 difii.svg 218 × 173; 24 KB
- Algebra1 ins fig019 fre.svg 253 × 74; 15 KB
- Anti-objeto.jpg 355 × 375; 578 KB
- Bijection N2 - N.pdf 791 × 785; 108 KB
- Bon ordre sur NxN et bijection.svg 357 × 354; 388 KB
- Borel-Hierarchie.svg 744 × 1,052; 190 KB
- Breuken zijn aftelbaar oneindig.png 181 × 212; 4 KB
- Cantor dust in three dimensions iteration 2.svg 1,411 × 1,535; 700 KB
- Cantor dust in three dimensions iteration 3.svg 1,411 × 1,535; 1.25 MB
- Cantor dust in three dimensions iteration 4.svg 1,411 × 1,535; 2.6 MB
- Cantor dust in three dimensions iteration 5.svg 1,411 × 1,535; 6.42 MB
- Cantor dust in two dimensions iteration 0.svg 1,411 × 1,409; 583 bytes
- Cantor dust in two dimensions iteration 1.svg 1,411 × 1,409; 2 KB
- Cantor dust in two dimensions iteration 2.svg 1,411 × 1,409; 6 KB
- Cantor dust in two dimensions iteration 3.svg 1,411 × 1,409; 23 KB
- Cantor dust in two dimensions iteration 4.svg 1,411 × 1,409; 92 KB
- Cantor dust in two dimensions iteration 5.svg 1,411 × 1,409; 366 KB
- Cantor dust in two dimensions iteration 6.svg 1,411 × 1,409; 1.43 MB
- Cantor set binary tree.svg 735 × 351; 70 KB
- Cantor's theorem visual.png 1,286 × 1,018; 48 KB
- Cartesianproduct.png 400 × 136; 21 KB
- Cay bieu dien tap.PNG 263 × 169; 58 KB
- Concepto de clase.jpg 389 × 231; 24 KB
- Conjunto finito.svg 901 × 578; 22 KB
- Deelverzameling venn diagram illustratie.png 403 × 166; 6 KB
- Denes König - Über eine Schlussweise aus dem Endlichen ins Unendliche.png 788 × 1,037; 327 KB
- Diagonal argument 1.svg 472 × 212; 511 bytes
- DiagonalerSchnitt.PNG 277 × 278; 10 KB
- DiagramasComposição.png 414 × 255; 18 KB
- Elementi di teoria degli insiemi.jpg 1,061 × 1,280; 124 KB
- EnsembleCombi.png 794 × 1,123; 125 KB
- Equivalentieklasse voorbeeld 4 hoeken.png 384 × 68; 2 KB
- Exhaustion inv.svg 227 × 174; 14 KB
- Exhaustion.svg 227 × 174; 10 KB
- Exploring Sets and Logic.pdf 1,275 × 1,650, 52 pages; 3.03 MB
- Formul formul.svg 405 × 34; 9 KB
- Función.jpg 1,553 × 519; 70 KB
- Function.gif 280 × 180; 4 KB
- Fuzzy crisp-mk.svg 476 × 240; 22 KB
- Geneste deelverzamelingen.png 403 × 166; 9 KB
- Gli Insiemi I.jpg 237 × 126; 7 KB
- Gli Insiemi II.jpg 231 × 126; 7 KB
- Gli Insiemi III.jpg 261 × 164; 10 KB
- Gli Insiemi III.svg 670 × 429; 3 KB
- Gli Insiemi IV.jpg 324 × 156; 11 KB
- Gli Insiemi V.jpg 329 × 159; 15 KB
- Graf-relacije.gif 200 × 206; 4 KB
- Hasse diagam deelbaarheid getallen 1 t-m 9.png 238 × 354; 7 KB
- HierarchieMengensysteme.svg 391 × 336; 47 KB
- Illustratie weergave ordening met bolletjes.png 510 × 129; 9 KB
- Implication Chains of Undecidable ZFC Statements.png 502 × 654; 8 KB
- INS then NIS.png 658 × 349; 19 KB
- Jaccard-Similarity-for-Sets.pdf 1,754 × 1,239, 10 pages; 906 KB
- Mathematical subrange.jpg 558 × 575; 16 KB
- Matrix weergave partiele ordening.png 153 × 154; 2 KB
- MengenTrennung.png 1,448 × 645; 61 KB
- NBG Evolution svg.svg 563 × 691; 251 KB
- NBG Evolution.pdf 937 × 1,150; 94 KB
- Not a Function.svg 200 × 200; 4 KB
- Not-Injection-Surjection.svg 200 × 200; 7 KB
- Nuclear set a.png 1,024 × 741; 137 KB
- Nuclear set b.png 1,024 × 741; 78 KB
- Paradox Russell.svg 465 × 544; 11 KB
- Partitie (verzamelingenleer).png 495 × 238; 8 KB
- Period3.png 618 × 464; 21 KB
- Point volume intersections two panel example.svg 921 × 372; 23 KB
- Point volume intersections.svg 443 × 372; 13 KB
- ProjectiveHierarchyInclusions.png 538 × 143; 5 KB
- Russell's paradox.svg 1,325 × 1,325; 6 KB
- Russellclass.png 283 × 113; 7 KB
- Set 5 + 2 over n for n in N.svg 500 × 50; 13 KB
- Set almost covering.svg 192 × 139; 12 KB
- Set covering.svg 191 × 138; 12 KB
- Set cutting.svg 369 × 227; 16 KB
- Set Theory Operations.svg 512 × 384; 74 KB
- Setminus disjoint.svg 440 × 86; 169 KB
- Setminus included.svg 440 × 86; 193 KB
- Setminus infinite.svg 440 × 114; 330 KB
- Składowe spójne zbioru.svg 400 × 192; 11 KB
- Song anh.png 507 × 501; 22 KB
- Textstelle mit der Mengendefinition von Georg Cantor.png 1,802 × 460; 19 KB
- Tred-Gprime.svg 168 × 325; 3 KB
- Tripleset.png 435 × 202; 22 KB
- Union disjoint.svg 439 × 85; 9 KB
- Union included.svg 439 × 85; 8 KB
- Union infinite.svg 227 × 120; 11 KB
- Univerza1.jpg 1,140 × 699; 24 KB
- Upset Plot.png 2,151 × 1,490; 159 KB
- Volume volume intersections three panel example.svg 1,240 × 390; 11 KB
- Voorbeeld afbeelding (verzamelingstheorie).png 314 × 253; 9 KB
- Voorbeeld Hasse diagram ordening deelbaarheid.png 174 × 262; 5 KB
- Voorbeeld partiele ordening familierelaties.png 499 × 393; 12 KB
- Voorbeeld partiele ordening.png 159 × 237; 3 KB
- Voorbeeld partiele ordening2.png 159 × 237; 3 KB
- Wiki estim param.png 1,000 × 1,000; 3.82 MB
- Zbiory spójne.svg 700 × 420; 7 KB
- Размито множество.gif 646 × 442; 5 KB
- Размито множество.jpg 4,000 × 3,000; 3.41 MB
- Сюръектив-функц.png 220 × 220; 6 KB